Degree Program and Examination Regulations for Bachelor's and Master's Degree Programs at the Department of Materials Science and Engineering at the Faculty of Engineering of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – FPO WW – Dated August 7, 2024

Based on Section 9 (1) in conjunction with Section 80 (1)(1), Section 84 (2)(1), Section 88 (9), Section 90 (1)(2) and Section 96 (3) of the Bavarian Higher Education Act **BayHIG**, FAU enacts the following Degree Program and Examination Regulations:

Contents:

I. General Provisions	2
Section 39 Scope	
Section 40 Bachelor's Degree Programs, Degree Programs in Equivalent Subjects	2
Section 41 Master's Degree Programs, Start of Degree Program, Related Degree Program	۱S,
Teaching and Examination Language	2
Section 42 Admissions Committee for Master's Degree Programs	3
II. Special Provisions	3
1. Bachelor's Examination	
Section 43 Grundlagen- und Orientierungsprüfung (GOP)	3
Section 44 Scope and Structure of the Bachelor's Degree Programs	3
Section 45 Broadening Horizons in the Bachelor's degree programs in Materials Science a	nd
Engineering, Nanotechnology and AI Materials Science and Engineering	3
Section 46 Bachelor's Thesis	4
2. Master's Examination	4
a) Master's degree program in Materials Science and Engineering	4
Section 47 Qualification for a Master's Degree Program in Materials Science and	
Engineering, Certificates, Admission Requirements	4
Section 48 Scope and Structure of the Master's Degree Program in Materials Science and	
Engineering	
Section 49 Core Subject Modules (M1 – M9)	
Section 50 Elective Modules (M10 – M11)	
Section 51 Academic Project (M12)	.10
Section 52 Soft Skills (M13)	
Section 53 Master's Thesis, Admission Requirements	.11
b) Master's degree program in Nanotechnology	
Section 54 Qualification for a Master's Degree in Nanotechnology, Certificates, Admission	
Requirements	.11
Section 55 Scope and Structure of the Master's Degree Program in Nanotechnology	.12
Section 56 Core Subject Modules (M6 – M9)	
Section 57 Scientific-technical elective modules (M10 and M11)	.13
Section 58 Academic Project (M12)	
Section 59 Soft Skills (M13)	
Section 60 Master's Thesis, Admission Requirements	
III. Transitional and Final Provisions	
Section 61 Legal Validity and Transitory Provisions	.14
Appendix 1: Structure of the Bachelor's Degree Program in Materials Science and	
Engineering	
Appendix 2: Structure of the Degree Program in Nanotechnology	.18
Appendix 3: Degree program structure for the Bachelor's Degree Program AI Materials	
Science and Engineering	.21

Appendix 4: Degree program structure for Master's degree program in Materials Science and	
Engineering	
Appendix 5: Structure of the Master's Degree Program in Nanotechnology	

I. General Provisions

Section 39 Scope

¹These degree program and examination regulations apply to Bachelor's and Master's degree programs at the Department of Materials Science and Engineering at the Faculty of Engineering at FAU leading to a Bachelor of Science (BSc) and Master of Science (MSc), specifically for the following degree programs:

- 1. Bachelor's degree program in Materials Science and Engineering,
- 2. Bachelor's degree program in Nanotechnology,
- 3. Bachelor's degree program in Al Materials Science and Engineering,
- 4. Master's degree program in Materials Science and Engineering and
- 5. Master's degree program in Nanotechnology.

²They complement the current version of the General Degree Program and Examination Regulations for Bachelor's and Master's Degree Programs and Other Study Programs within the meaning of Section 77 (5) **BayHIG** at the Faculty of Engineering at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – **ABMPO/TF** –.

Section 40 Bachelor's Degree Programs, Degree Programs in Equivalent Subjects

(1) The Bachelor's degree programs in Materials Science and Engineering, Nanotechnology and AI Materials Science and Engineering comprise modules worth 180 ECTS credits distributed over six semesters, the Grundlagen- und Orientierungsprüfung (preliminary examination) and the Bachelor's examination, further details are stipulated in **Appendix 1** to **3**.

(2) The provisions in Section 28 (1)(2)(2) **ABMPO/TF** do not apply to degree programs in equivalent subjects.

Section 41 Master's Degree Programs, Start of Degree Program, Related Degree Programs, Teaching and Examination Language

(1) ¹The consecutive Master's degree programs in Materials Science and Engineering and Nanotechnology consist of modules worth 120 ECTS credits each. ²These include modules in the core subjects, elective modules, the Master's thesis module including presentation and discussion and further compulsory modules.

(2) The master's degree programs may be started in the winter semester or the summer semester.

(3) The provisions in Section 34 (2)(2) **ABMPO/TF** do not apply to degree programs in equivalent subjects.

(4) ¹In deviation from Section 4 (5) **ABMPO/TF**, the teaching and examination language in the Master's degree program is English. ²Individual teaching units and examinations in (compulsory) elective modules may be held in German. ³This shall not affect the rest of Section 4 (5) **ABMPO/TF**.

Section 42 Admissions Committee for Master's Degree Programs

¹For the Master's degree programs in Materials Science and Engineering and Nanotechnology, a Joint Admissions Committee is appointed according to Section 14 **ABMPO/TF**. ²In deviation from Section 14 **ABMPO/TF**, this consists of one full-time university lecturer and one research associate each pursuant to Section 19 (1) **BayHIG** from every chair at the Department of Materials Science and Engineering at the Faculty of Engineering at FAU. ³The chair of the admissions committee is held by a professor.

II. Special Provisions

1. Bachelor's Examination

Section 43 Grundlagen- und Orientierungsprüfung (GOP)

¹The Grundlagen- und Orientierungsprüfung in the Bachelor's degree programs comprises the modules marked accordingly in **Appendix 1** to **3**. ²The Grundlagen- und Orientierungsprüfung shall have been passed if the modules marked accordingly worth 30 ECTS credits have been passed.

Section 44 Scope and Structure of the Bachelor's Degree Programs

¹All modules in the Bachelor's degree program are compulsory. ²The Bachelor's degree program shall have been passed if all modules stipulated in **Appendix 1** to **3** worth 180 ECTS credits have been passed. ³The distribution over the study semesters and the number of ECTS credits to be earned in the modules as well as the type and scope of the examinations are set forth in **Appendix 1** to **3**.

Section 45 Broadening Horizons in the Bachelor's degree programs in Materials Science and Engineering, Nanotechnology and Al Materials Science and Engineering

(1) ¹The learning outcome of module B21 (Broadening Horizons) of the Bachelor's degree programs in Materials Science and Engineering, Nanotechnology, and AI Materials Science and Engineering is for students to gain intercultural skills and practical work experience. ²The aim is for students to use course content and gain more advanced knowledge in an (inter)national research environment. ³The focus lies on planning, organizing and carrying out tasks independently (project). ⁴Students can choose according to their own interests, taking into account the guidelines published in the module handbook, whether they want to include industrial internships, study stays abroad and/or activities as student assistants at universities, research institutions and/or in industry, each worth up to 15 ECTS credits, or language courses with a certificate worth 5 ECTS credits. ⁵The specific learning outcome and the specific examination subjects of module 21 (Broadening Horizons) depend on the selection made in Sentence 4.

(2) ¹As a course achievement, a report must be submitted in which students present and reflect on their experiences in the respective chosen area. ²The report shall be between 15 and 30 pages in length; further details can be found in the module handbook.

Section 46 Bachelor's Thesis

(1) ¹The Bachelor's thesis is intended to enable students to learn to solve research problems relating to materials science and engineering, nanotechnology, and AI materials science and engineering independently and document their evidence. ²The thesis shall have a workload of approximately 300 hours to be completed within five months. ³The results of the Bachelor's thesis shall be presented in a presentation with a maximum length of 30 minutes followed by a discussion. ⁴The date of the presentation shall be determined by the supervisor at the latest by the date the Bachelor's thesis is due, and the student shall be informed of the date in good time. ⁵A total of 15 ECTS credits shall be awarded for the Bachelor's thesis including the presentation.

(2) ¹The topic of the Bachelor's thesis shall be issued by a part-time or full-time university lecturer from the Department of Materials Science pursuant to Section 19 **BayHIG** who is employed at FAU as their main occupation pursuant to Section 53 (4) **BayHIG**. ²The chair of the Examinations Committee shall decide on any exceptions at the student's prior written request.

(3) ¹The sixth semester is recommended for completing the Bachelor's thesis. ²Admission to the Bachelor's thesis shall be governed by Section 31 (3)(2) **ABMPO/TF**.

2. Master's Examination

a) Master's degree program in Materials Science and Engineering

Section 47 Qualification for a Master's Degree Program in Materials Science and Engineering, Certificates, Admission Requirements

(1) ¹A subject-specific degree pursuant to Section 33 (1)(1) alt. 1 **ABMPO/TF** is a Bachelor's degree in Materials Science and Engineering or Nanotechnology pursuant to these degree program and examination regulations, or an equivalent degree from an institute of higher education in Germany or abroad from one of the relevant areas (Materials Science, Materials Science and Engineering, Nanomaterials and Nanotechnology). ²Subject-related degrees that show no considerable differences in terms of qualification pursuant to Section 33 (1)(1) alt. 2 **ABMPO/TF** are Bachelor's or Diplom degrees in Chemistry, Physics, Mechanical Engineering, Process Engineering and degree programs with a broad focus on topics related to materials science and engineering, provided the following minimum content was covered:

- 1. at least 10 ECTS credits in mathematics
- 2. at least 20 ECTS credits in physics and chemistry
- 3. at least 10 ECTS credits in practical courses and IT
- 4. at least 20 ECTS credits in the foundations of materials science.

³In accordance with (5)(4) of the **Appendix to ABMPO/TF**, applicants with a subjectrelated degree or an equivalent degree as defined in sentence 2 shall only be admitted to the Master's degree program after passing an oral admission examination according to (3).

(2) ¹As stipulated in paragraph (2) sentence (6) no (3) of the **Appendix** to **ABMPO/TF**, applicants are required to provide additional proof of English language skills equivalent to at least Level B2 of the Common European Framework of Reference (CEFR) by submitting either relevant school reports or certificates issued by a language school or university. ²Proof of language skills can in particular be provided by:

- 1. submitting a school leaving certificate or another certificate issued by the school providing evidence that English courses have been taken at school up until a level equivalent to B2 CEFR,
- 2. A certificate indicating that the applicant has successfully passed the Test of English as a Foreign Language (TOEFL), attaining at least 85 points in the iBT test, or
- 3. A certificate from the English Language Testing System (IELTS) with a grade of 5.0 or above; other possible alternatives for proving evidence of language proficiency are listed in the table of equivalence published by the FAU Language Centre.

³Proof of language proficiency does not need to be submitted if the applicant acquired their university entrance qualification or relevant undergraduate degree in English.

(3) Applicants shall be deemed as qualified for the Master's degree program in Materials Science and Engineering according to paragraph 5 (2)(2) of the **Appendix to ABMPO/TF** if they have passed the compulsory subject-related or degree-program specific modules B6, B7 and B8 from the Bachelor's degree program in Materials Science and Engineering according to these examination regulations with an average module grade of 3.0 or better.

(4)¹ In the oral admission examination according to (5)(3) et seq. of the **Appendix to ABMPO/TF**, applicants shall be evaluated according to the following criteria and weighting:

- 1. Subject-specific basic knowledge in materials science and materials processing (in particular material structures, mechanical, optical, electronic and magnetic properties of materials and characterization methods) (50 percent) and
- 2. Good knowledge of a field of specialization corresponding to the core subjects available in the Master's degree program; the applicant shall choose the core subjects to be discussed during the interview (50 percent).

²The choice of core subjects in the Master's degree program is not dependent on the choice made for the admission examination pursuant to no.2.

Section 48 Scope and Structure of the Master's Degree Program in Materials Science and Engineering

(1) ¹Pursuant to **Appendix 4**, the Master's degree program in Materials Science and Engineering consists of

- 1. Core subject 1 modules, consisting of one foundation module, one supplementary module and two elective modules (M1 to M4)
- 2. Core subject 2 modules, consisting of one foundation module and one supplementary module (M6, M7)
- 3. Core subject 3 modules, consisting of one foundation module and one supplementary module (M8, M9)
- 4. Core subject elective module (M5), that must be chosen from one of the three core subject areas
- 5. Elective modules (M10, M11)
- 6. as well as the academic project (M12), soft skills (M13) and Master's thesis with presentation (M14) modules.

²Modules M12 and M14 shall be taken in a core subject in which usually 25 ECTS credits have been achieved; the core subject elective module (M5) and modules M10 or M11 should be chosen accordingly. ³Module M13 shall be taken in one of the three core subjects.

(2) ¹The type and scope of the examinations depend on the skills taught in the respective modules pursuant to (1). Details and the recommended distribution of modules across the standard duration of study are stated in **Appendix 2** and the module handbook. ²The module handbook is published before the beginning of the semester in accordance with local practice.

(3) The Master's degree program shall have been passed once the student has passed all modules pursuant to **Appendix 4** and has acquired 120 ECTS credits.

Section 49 Core Subject Modules (M1 – M9)

(1) ¹The learning outcome of the core subject modules M1 to M9 is for students to deepen and expand their expertise (designing properties of materials and components and how these affect the resulting structure and specific manufacturing processes) in three essential special areas of materials science and engineering by applying scientific methodology in theory and laboratory practice. ²Each Chair of the Department of Materials Science and Engineering offers a core subject, with the following special areas available for in-depth study:

1. General material properties

¹The focus of the foundation and supplementary module is on studying the fundamental relationships between microstructural properties and the resulting mechanical properties of different materials and material composites across length scales. In particular, students learn materials science fundamentals using applied examples from different material classes, such as high-temperature materials, intermetallic phases, light metals, and coating systems. The core subject consolidates material and physical fundamentals and expands expertise on basic concepts in materials and fracture mechanics, the effects of microstructure on mechanical properties, and modern simulation methods. ²Furthermore, students learn the fundamentals of material fatigue and the essential deformation and damage processes of cyclic plasticity, as well as the basics of scanning probe microscopy and nanomechanics.

2. Materials science and engineering for metals

¹The focus of the foundation and supplementary module is on deepening students' knowledge of the fundamentals and technologies of metallic materials. ²The foundation module covers the fundamentals of phase and microstructure transformation (e.g., in the material groups titanium, nickel-based, and copper alloys) and their relationships supported by simulations, alongside important process technologies (such as casting, forming, powder metallurgy, and joining) as well as material properties and testing. ³The supplementary module focuses on the process and microstructure formation as well as the introduction of special (new) process technologies. ⁴In terms of materials, the module explores steels, particularly high-strength steels and lightweight steel construction, as well as an introduction to the material groups of refractory metals, metallic glasses, composites and cellular metallic materials in connection with their specific manufacturing methods.

3. Glass and ceramics

¹The focus of the foundation and supplementary module is on exploring the physical-chemical properties of glasses and ceramics as well as their relevance in manufacturing and application. ²The foundation module covers the properties of glasses and ceramics in equilibrium and non-equilibrium systems in terms of microstructure, physical properties (e.g., thermal, chemical, time-dependent), and phase diagrams and the resulting differences between the two material classes. ³In particular, high-temperature processes in polycrystalline ceramics (e.g., fundamentals of sintering, diffusion mechanisms, defects) and the possibility of microstructure control (e.g., sintering parameters, composition effects) are considered. ⁴The application of ceramic materials under the influence of microstructure and the design for technical use as well as material testing and characterization convey the application relevance of glass and ceramics. ⁵The supplementary module focuses on the practical implementation of different manufacturing and characterization methods of ceramic materials and material-related evaluation. ⁶The functional and optical properties of glasses and ceramics are particularly addressed with regard to defect structures and doping.

4. Corrosion and surface technology

¹The focus of the foundation and supplementary module is on the teaching of technologies and characterization of surface modifications, calculation of corrosion problems, and fundamentals of electrochemistry with relevance to practical applications. ²The foundation module covers the technologies for surface modification and functionalization in depth and is supplemented by case studies from application and research. ³This is particularly important in the calculation of corrosion problems to deepen the knowledge of corrosion processes. ⁴The methods and procedures of electrochemical processes form the basis for a deeper understanding of modern applications in energy technology (e.g., fuel cells, battery systems). ⁵The supplementary module focuses on the practical deepening of the knowledge from the foundation module within the framework of corrosion engineering experiments, e.g., conducting electrochemical measurements, anodizing, and characterizing the high-temperature oxidation resistance of metals and alloys.

5. Polymer materials

¹The focus of the foundation and supplementary module is on the fundamentals, technology, characterization, and applications of polymer materials, polymer blends, and composites. ²The foundation module covers processing technologies in depth and links them with mechanical engineering solutions. ³Furthermore, model concepts for describing the viscoelastic behavior depending on time and temperature are considered and transferred to practical examples (e.g., polymer components, fibers, films). ⁴The supplementary module focuses on the influence of scale on physical properties as well as the teaching of processes at interfaces in polymer material systems and the compatibility of different polymers. ⁵Furthermore, complex model concepts for describing polymer properties (e.g., molecular weight dependence, phase diagrams) are addressed.

6. Materials in Electronics and Energy Technology

¹The focus of the foundation and supplementary module is on the crystalline structure of solids, crystal growth, and optical and electronic properties of semiconductors as well as their applications. ²The foundation module links quantum mechanical fundamentals, charge transport, and the type of charge carriers with electrical/optical properties (e.g., resistance, defect density, pn-junction) in crystalline solids. ³The technologies for the production (e.g., crystal growth from melt, solution, gas phase) of various semiconductor materials and their processing (e.g., oxidation, doping, lithography) into electronic components establish the practical application relevance (e.g., silicon-based semiconductors) also through practical experiments. ⁴The supplementary module focuses on thin-film processes for manufacturing semiconductor contacts and devices (e.g., displays, photovoltaics, photodetectors). ⁵Further module content includes transistor-based memory materials and energy harvesting technologies.

7. Biomaterials

¹The focus of the foundation and supplementary module is on biomaterials, their cell-material interaction, tissue engineering and regenerative medicine, and drugdelivery systems. ²The foundation module defines biomaterials as implant materials and covers cell-material interaction over surfaces (e.g., surface chemistry, topography, functionalization) and the interface between biomaterials and body, as well as exploring these aspects through practical experiments.

³The supplementary module focuses on biomaterials for tissue engineering through the use of (multifunctional) scaffolds (e.g., for bone and soft tissue) and practical implementation.

8. Materials simulation

¹The focus of the foundation and supplementary module is on simulation methods for different length scales and their mathematical fundamentals as well as implementation in algorithms. ²The foundation module deepens the mathematical and numerical methods and conveys different simulation approaches (e.g., molecular dynamics, Monte Carlo, finite elements, phase-field theory). ³The supplementary module focuses on atomistic simulation methods as well as continuum models for material simulation, supported by mathematical discretization schemes.

9. Micro and nanostructure research

¹The focus of the foundation and supplementary module is on the fundamentals and physical principles of scattering probe-material interaction and their application in studying process-structure-property relationships of materials down to the atomic scale. ²The foundation module covers the physical principles of fast electrons, generating, deflecting and focusing them using electromagnetic fields, and their interaction with (nano)materials and in the detector. ³Subsequently, various imaging (e.g., BF, DF, HRTEM, STEM), diffraction (e.g., ED, CBED), spectroscopy (e.g., EDXS, EELS, EFTEM), and 3D techniques (ET) as well as their application in current research topics are introduced. ⁴Lectures are always complemented with practical exercises based on the material, where students can apply their knowledge using modern software. ⁵The supplementary module focuses on the practical implementation of the learned content from the foundation module. In this context, various TEM, SEM, and X-ray methods are applied to diverse sample systems using state-of-the-art microscopes during a practical course.

³This should allow students to acquire skills of relevance to research. ⁴The choice of three core subjects ensures that students acquire a broad and well-founded subject knowledge. ⁵The learning outcome for the core subject modules is to give students the opportunity to choose their individual focus and tailor their profile in view of their future career and/or personal development. ⁶The laboratory courses allow students to put the theory they have covered into practice.

(2) ¹Students must choose three core subjects. ²For the first core subject, students shall select at least modules M1 to M4 (25 ECTS credits) from the modules offered by one Chair. ³For the second core subject, students shall select modules M6 and M7 (15 ECTS credits) from the modules offered by a second Chair. ⁴For the third core subject, students shall select modules M8 and M9 (15 ECTS credits) from the modules offered by a third Chair. ⁵Due to the requirement to acquire specific subject knowledge pursuant to Section 4 (3) **ABMPO/TF**, modules may not overlap or be taken more than once. ⁶Module M5 (5 ECTS credits) is chosen from the modules offered by the three Chairs in the core subjects and allows students to specialize further in a particular subject. ⁷The choice of core subjects becomes binding at the latest once students are admitted for the first time to the examinations.

(3) ¹The core subject foundation modules M1, M6 and M8 generally consist of a lecture (4 SWS), a tutorial (2 SWS) and a laboratory course (2 SWS), or a lecture (4 SWS), a tutorial (2 SWS) and a seminar (2 SWS), or a combination of lecture, tutorial, laboratory course and seminar coming to a total of 8 SWS. ²The core subject supplementary modules M2, M7 and M9 generally consist of one lecture (2 SWS) and one tutorial (2 SWS), or one lecture (1 SWS), one laboratory course (2 SWS) and one seminar (1 SWS), or one laboratory course (4 SWS). ³The elective modules M3, M4 and M5 generally consist of one lecture (2 SWS) and one lecture (1 SWS), one tutorial (1 SWS) and one practical course (2 SWS). ⁴Any deviations and the exact structure of the modules are stipulated in the module handbook.

(4) ¹The specific learning outcome and the specific examination subjects and the type and scope of the examination are dependent on the skills taught in the respective module pursuant to paragraph (1) and are stated in **Appendix 2** and the module handbook. ²Examination forms for each foundation module may include written examination (90 min.), oral examination (30 min.), seminar achievement, or practical achievement pursuant to Section 6 (3) **ABMPO/TF**. ³Examination forms for each core subject supplementary module (M2) and core subject elective module (M3-M9) may include written examination (45 min.), oral examination (15 min.), seminar achievement, or practical achievement pursuant to Section 7 (3) **ABMPO/TF**. ⁴Section 7 (2)(3) **ABMPO/TF** stipulates that in justified exceptional circumstances, combinations of the individual achievements stated in sentence 2 or 3 may also be possible. ⁵The module handbook is published before the beginning of the semester in accordance with local practice.

Section 50 Elective Modules (M10 – M11)

(1) ¹The overriding learning outcome of the compulsory elective modules M10 to M11 is for students to gain more advanced knowledge and expand their subject-related skills relevant to research in the area of materials science and engineering with specific reference to their chosen areas of specialization. ²The choice of compulsory elective modules, in particular in combination with the choice of core subject modules M1 to M9, gives students the opportunity to tailor their profile in view of their future careers.

(2) ¹The elective modules worth 5 ECTS credits each may be chosen from those modules offered by the Department of Materials Science and from modules offered by different departments at the Faculty of Engineering. ²The specific learning outcomes and examination subjects of the individual modules depend on the chosen module and are stated in the relevant **degree program and examination regulations** and the module handbook. ⁴No module may be taken twice, see Section 4 (3) **ABMPO/TF**. ⁵Foundation and supplementary modules in the core subjects may not be submitted as elective modules.

(3) ¹If the elective modules M10 and M11 are chosen from the Department of Materials Science and Engineering, they generally consist of a lecture (1 SWS), a tutorial (1 SWS), and a practical course (2 SWS) or a lecture (1 SWS), a tutorial (1 SWS), and a seminar (2 SWS) or a laboratory course (4 SWS). ²Any deviations and the exact structure of the modules are stipulated in the module handbook.

(4) ¹Examination forms in elective modules offered by the Department of Materials Science may include written examination (90 or 45 min.), oral examination (15 or 30 min.), seminar achievement, or practical achievement pursuant to Section 7 (3) **ABMPO/TF**. ²Section 7 (2)(3) **ABMPO/TF** stipulates that in justified exceptional circumstances,

combinations of the individual achievements stated in sentence 2 may also be possible. ³The module handbook is published before the beginning of the semester in accordance with local practice.

(5) Notwithstanding (3) and (4), details of the type and scope of examinations and teaching units in modules imported from other degree programs shall be stipulated in the relevant **degree program and examination regulations** and the module handbook.

Section 51 Academic Project (M12)

(1) ¹The learning outcome of the Academic project module (M12) is for students to independently gather, assess, interpret and provide a clear and concise summary of scientifically and technologically relevant information on a research area of relevance for their Master's thesis. ²The aim of the practical work is to enable students to put the knowledge they have gained from literature into practice. ³The choice of the topic for the academic project therefore determines the topic of the Master's thesis.

(2) ¹The Academic project module usually consists of an advanced seminar (4 SWS) and self-study (8 SWS). ²Any deviations and the exact structure of the modules are stipulated in the module handbook.

(3) ¹The specific learning outcome and the specific examination subjects and the type and scope of the examination are dependent on the skills taught in the respective module pursuant to (1) and are stated in the module handbook. ² Students have to complete one graded seminar achievement for each module pursuant to Section 7 (3) **AB-MPO/TF**, depending on the specific manner in which the module is taught. ³The module handbook is published before the beginning of the semester in accordance with local practice.

Section 52 Soft Skills (M13)

(1) ¹The Soft Skills module generally consists of a seminar in presentation skills (3 SWS) and an excursion (1 SWS). ²Any exceptions are detailed in the module handbook.

(2) ¹The learning outcome of the "Soft Skills" module is firstly to allow students to acquire relevant skills that will enable them to present and discuss scientific results and findings on a topic of the Master's degree program. ²A second learning outcome is aimed at promoting personal and social skills through preparing, reporting on and presenting a topic relating to the subject for a specialist audience at a Master's level and in a manner tailored to suit the target group, as well as working under supervision in a group to develop and test subject-related applications and possibilities for implementation with respect to the chosen subject. ³Thirdly, the choice of excursions allows students to tailor their profile in view of their career plans and/or their own personality. ⁴Section 48 (1)(3) applies.

(3) ¹The specific learning outcomes and the specific examination subjects and the type and scope of the examination are dependent on the skills taught in the respective module pursuant to (1) and are stated in the module handbook. ² Students have to complete one graded seminar achievement and an excursion achievement for each module pursuant to Section 7 (3) **ABMPO/TF**, depending on the specific manner in which the

module is taught. ³The module handbook is published before the beginning of the semester in accordance with local practice.

Section 53 Master's Thesis, Admission Requirements

- (1) ¹The requirements for admission to the Master's thesis (Module M14) shall be as follows:
- 1. Acquiring at least 60 ECTS credits in the Master's degree program
- 2. Submission of relevant certificates if admission to the Master's degree program was granted with conditions according to Section 33 (2)(2) **ABMPO/TF**.

²In justified, exceptional cases, the Examinations Committee shall be entitled to grant early admission to the Master's thesis.

(2) ¹30 ECTS credits shall be awarded for the Master's thesis including the presentation. ²The Master's thesis module consists of the Master's thesis (27 ECTS credits) and a presentation followed by a discussion (3 ECTS credits). ³The two graded parts of the examination shall be weighted as follows when determining the total grade for the module: Master's thesis (90%) and presentation with discussion 10%.

(3) ¹The Master's thesis is intended to demonstrate students' ability to solve scientific problems in the field of materials science and engineering independently. It shall usually deal with a scientific subject from one of the three core subjects. ²The thesis shall have a workload of approximately 825 hours to be completed within six months. ³Section 46 (2) shall apply accordingly. ⁴The Master's thesis shall be written in English. ⁵In justified exceptional cases, e.g., if the scientific language in the field of the Master's thesis topic is predominantly German, the Examinations Committee may allow the thesis to be written in German upon request.

(5) ¹In addition to the Master's thesis, students shall hold a presentation lasting approximately 30 minutes presenting the Master's thesis and its results, followed by a discussion. ²The date of the presentation shall be determined by the supervisor at the latest by the date the Master's thesis is due, and the student shall be informed of the date in good time.

b) Master's degree program in Nanotechnology

Section 54 Qualification for a Master's Degree in Nanotechnology, Certificates, Admission Requirements

(1) ¹A subject-specific degree as specified in Section 33 (1)(1) **ABMPO/TF** is the Bachelor's degree in Nanotechnology according to these degree program and examination regulations or an equivalent degree in Nanotechnology from another university in Germany or abroad that leads to a qualification equivalent to the Bachelor's degree completed according to these degree program and examination regulations. ²Subject-related degrees that show no considerable differences in terms of qualification pursuant to Section 33 (1)(1) alt. 2 **ABMPO/TF** shall be Bachelor's or Diplom degrees in Materials Science and Engineering, Physics, Chemistry or in degree programs with a focus on nanotechnology, provided the following minimum content was covered:

- 1. at least 10 ECTS credits in mathematics
- 2. at least 20 ECTS credits in physics and chemistry
- 3. at least 10 ECTS credits in laboratory courses and IT
- 4. at least 20 ECTS credits in the foundations of nanotechnology.

³In accordance with (5)(4) of the **Appendix to the ABMPO/TF**, applicants with a subject-related degree as defined in Section 33 (1)(1) alt. 2 **ABMPO/TF** or a degree as defined in Section 33 (2)(2) **ABMPO/TF** shall only be admitted to the Master's degree program after passing an oral admission examination according to paragraph (4).

(2) ¹As stipulated in Section (2)(6)(3) of the **Appendix to ABMPO/TF**, applicants are required to provide additional proof of English language skills equivalent to at least Level B2 of the Common European Framework of Reference (CEFR) by submitting either relevant school reports or certificates issued by a language school or university. ²The following are considered suitable proof of language skills:

- 1. A school leaving certificate or another certificate issued by the school providing evidence that English courses have been taken at school up until a level equivalent to B2 CEFR
- 2. A certificate indicating that the applicant has successfully passed the Test of English as a Foreign Language (TOEFL), attaining at least 85 points in the iBT test, or the
- 3. International English Language Testing System (IELTS) 5.0 or above;

Other possible alternatives for proving evidence of language proficiency are listed in the table of equivalence published by the FAU Language Centre. ³Proof of language proficiency does not need to be submitted if the applicant acquired their university entrance qualification or relevant undergraduate degree in English.

(3) Applicants shall be deemed as qualified for the Master's degree program in Nanotechnology according to paragraph 5 (2)(2) of the **Appendix to ABMPO/TF** if they have passed the compulsory subject-related or degree-program specific modules B6, B7 and B8 from the Bachelor's degree program in Nanotechnology according to these examination regulations with an average module grade of 3.0 or better.

(4) In the oral admission examination according to (5)(3) et seq. of the **Appendix to ABMPO/TF**, applicants shall be evaluated according to the following criteria and weighting:

- 1. Basic knowledge in materials science and engineering, physics and chemistry of condensed materials (in particular atomic structure, thermodynamic, optical, electronic and magnetic properties of materials as well as characterization methods) (50 percent)
- 2. Sound knowledge of nanotechnology, for example chemical materials processing or nano characterization methods (50 percent).

Section 55 Scope and Structure of the Master's Degree Program in Nanotechnology

(1) ¹Type and scope of the course and examination achievements are set out in **Appendix 2**. ²The academic project and the Master's thesis (M12 and M14) shall be taken in a core subject in which usually 25 ECTS credits have been achieved. ³Module M13 shall be taken in the core subject in order to explore the teaching content in more depth.

(2) The Master's degree program shall have been passed once the student has passed all modules pursuant to **Appendix 5** and has acquired 120 ECTS credits.

Section 56 Core Subject Modules (M6 – M9)

Section 49 applies accordingly for the core subject modules (M6 to M9) in the Master's degree program in Nanotechnology.

Section 57 Scientific-technical elective modules (M10 and M11)

(1) ¹The overriding learning outcome of the scientific-technical elective modules M10 and M11 is for students to expand their subject-related skills going beyond the core subject modules and gain more advanced knowledge in the various subject areas. ²Students may choose from the modules offered by the Faculty of Engineering and from those offered by the Faculty of Sciences. ³The choice of scientific-technical elective modules, in particular in combination with the core modules M6 to M9, gives students the opportunity to tailor their profile in view of their future careers. ⁴The specific learning outcomes and examination subjects of the individual modules depend on the chosen module and are stated in the relevant **degree program and examination regulations** and the module handbook. ⁵No module may be taken twice, see Section 4 (3) **ABMPO/TF**.

(2) ¹The scientific-technical elective modules from the Department of Materials Science and Engineering worth 5 ECTS credits each generally consist of one lecture (1 SWS), one tutorial (1 SWS), and one laboratory course (2 SWS) or one lecture (1 SWS), one tutorial (1 SWS), and one seminar (2 SWS), or one laboratory course (4 SWS). (5) ²Any deviations from the provisions in sentence 1 and the module structure are set out in the module handbook.

(3) ¹The specific learning outcomes and the specific examination subjects and the type and scope of the examinations are dependent on the skills taught in the respective module pursuant to (1) and sentence 2 and are stated in the module handbook. ²Examination forms in modules offered by the Department of Materials Science may include written examination (90 or 45 min.), oral examination (30 or 15 min.), seminar achievement, or practical achievement pursuant to Section 7 (3) **ABMPO/TF**. ³ Section 7 (2)(3) **ABMPO/TF** stipulates that in justified exceptional circumstances, combinations of the individual achievements stated in sentence 2 may also be possible. ⁴The module handbook is published before the beginning of the semester in accordance with local practice.

(4) For modules imported from other departments and the Faculty of Sciences, the provisions stipulated in the relevant **degree program and examination regulations** or the module handbook will apply in deviation from (3) and (4).

Section 58 Academic Project (M12)

Section 51 applies for the academic project (M12) in the Master's degree program in Nanotechnology with the proviso that the academic project module usually comprises an advanced seminar (4 SWS) and self-study (4 SWS).

Section 59 Soft Skills (M13)

Section 52 applies accordingly for the soft skills module (M13) in the Master's degree program in Nanotechnology.

Section 60 Master's Thesis, Admission Requirements

¹The Master's thesis in the Master's degree program in Nanotechnology is intended to demonstrate students' ability to solve scientific problems in the field of nanotechnology independently. It shall usually deal with a scientific subject from the core subject. ²Furthermore, Section 53 shall apply accordingly.

III. Transitional and Final Provisions

Section 61 Legal Validity and Transitory Provisions

(1) ¹These degree program and examination regulations shall come into effect on October 1, 2024. ²They shall apply to students starting one of the degree programs listed in Section 39 from the winter semester 2024/2025 onwards. ³They shall also apply to all students who are already studying in accordance with the degree program and examination regulations for the Bachelor's Degree Program in Materials Science and Engineering and the Master's Degree Program in Materials Science and Engineering at the Faculty of Engineering of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **FPOMWT** dated July 13, 2023, as well as the Degree Program and Examination Regulations for the Bachelor's Degree Program in Nanotechnology and the Master's degree program in Nanotechnology at the Faculty of Engineering at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **FPOMWT** have been program in Nanotechnology at the Faculty of Engineering at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **- FPONT** – dated July 13, 2023.

(2) At the same time, the degree program and examination regulations for the Bachelor's Degree Program in Materials Science and Engineering and the Master's Degree Program in Materials Science and Engineering at the Faculty of Engineering of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **FPOMWT** dated July 13, 2023, as well as the Degree Program and Examination Regulations for the Bachelor's Degree Program in Nanotechnology and the Master's degree program in Nanotechnology at the Faculty of Engineering at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – **FPONT** – dated July 13, 2023 shall become invalid, with the exception of the provisions in Section 52 (2) **FPOMWT** and Section 51 (2) **FPONT**.

Appendix 1: Structure of the Bachelor's Degree Program in Materials Science and Engineering

			sws	6 (sem	ester h	ours)	Total		ribution i		kload p S credits		ester	Type and scope of the
No.	Module name	Teaching unit	L	т	Р	S	ECTS credits	1st sem.	2nd sem.	3rd sem.	4th sem.	5th sem.	6th sem.	examination
		Materials and their structure	2	1				3.5						
B1	Materials and their structure I - Metallic materials (GOP)	Fundamentals of metallurgical technology	1	1			7.5	2.5						EA (WE, 90 min)
		Supplements to materials and their structure		1				1.5						
	Matariala and their structure II	Non-metallic inorganic materials	1	1					2.5					
B2	Materials and their structure II - Inorganic and organic mate-	Organic materials	1	1			10		2.5					EA (WE, 90 min) + CA
02	rials (GOP)	Exercises on non-metallic mate- rials		2			10		2.5					(LA)
		Labworks for MWT I			2				2.5					
		Mechanical properties	2				-			2.5				
B3	Materials science I - Mechan- ics and structural characteri-	Characterization and inspection of materials	1	1			12.5			2.5				EA (WE, 90 min) + CA
БЗ	zation	Exercise on mechanical proper- ties and characterization		2			12.5 			2.5				(LA)
		Labworks for MWT II			4		-			5				
		Properties and characterization of functional materials I	1	1							2,.			
B4	Materials science II - Func-	Properties and characterization of functional materials II	1	1			12.5				2.5			EA (WE, 90 min) + CA
	tional properties of materials	Exercises on characterization and properties		2							2.5			(LA)
		Labworks for MWT III			4		-				5			
		Scientific computing	1	1							2.5			
	Data acquisition and model-	Introduction to simulation meth- ods	1	1						2.5				
B5	ing	Measurement analytics and sen- sor technology	1	1			10			2.5				EA (WE, 90 min)
		Jupyter notebooks in use for measurement analytics	1	1			_				2.5			
	Applied metericle science !	General material properties	1	1			7.5					2.5		
B6	Applied materials science I - Materials with different bond-	Polymer materials	1	1								2.5		EA (WE, 90 min)
	ing types	Materials science and engineer- ing for metals	1	1								2.5		_, (, , , , , , , , , , , , , , , , , ,
D -	Applied materials science II	Glass and ceramics					2.5							
B7	Structure and functions of materials A	Materials in electrical engineer- ing	1	1		7.5	7.5					2.5		EA (WE, 90 min)

			sws	6 (sem	ester h	ours)	Total		ributior	n of wor in ECTS	kload p S credite	er seme	ester	Type and scope of the
No.	Module name	Teaching unit	L	т	Р	S	ECTS credits	1st sem.	2nd sem.	3rd sem.	4th sem.	5th sem.	6th sem.	examination
		Micro and nanostructure re- search	1	1								2.5		
		Materials simulation	1	1								2.5		
	Applied materials Science III	Biomaterials	1	1								2.5		EA (WE, 90 min) + CA
B8	Structure and functions of materials B	Corrosion and surface technol- ogy	1	1			10					2.5		(LA)
		Labworks for MWT IV			2							2.5		
	Materials engineering I - Mate-	Further processing of materials	1	1				2.5						
B9	rial cycles (GOP)	Material cycles and sustainabil- ity	1	1			5	2.5						EA (WE, 60 min)
	Materials engineering II -	Solid-state kinetics	1	1					2.5					
B10	Thermodynamics & kinetics of materials	Solid state thermodynamics	1	1			5		2.5					EA (WE, 60 min)
B11	Materials engineering III - In- teraction of materials and en-	Materials in biological environ- ments	1	1			5			2.5				EA (WE, 60 min)
	vironment	Corrosion of materials	1	1							2.5			
B12	Materials engineering IV - De-	Materials and design I	1	1			5				2.5			EA (WE, 60 min)
012	signing with materials	Materials and design II	1	1			J				2.5			
		Crystallography	1	1						2.5			+	
B13	Materials science III - Crystal- lography + material defects	Material defects Physical laboratory II (Structural	1	1	2		7.5				2.5 2.5			EA (WE, 90 min) + CA (LA)
B14	Statics and mechanics of ma- terials	physics)	3	4			7.5			7.5				EA (WE, 90 min)
B15	Experimental physics I		3	1			5	5						EA (WE, 90 min)
B16	Experimental physics II		3	1	2		7.5		7.5					EA (WE, 90 min) + CA (LA)
B17	Mathematics for MWT 1 (GOP)		4	2			7.5	7.5						EA (WE, 90 min) + CA (TA)
B18	Mathematics for MWT 2		4	2			7.5		7.5					EA (WE, 90 min) + CA (TA)
B19	General and inorganic chem- istry for MWT/NT		4				5	5						EA (WE, 45 min)
B20	Elective module from the uni- versity module catalog		4				5					5		CA ¹
B21	Broadening Horizons accord- ing to Section 45						15						15	CA: see Section 45 (2)
Baa		Bachelor's thesis					45						12	EA (Bachelor's thesis) + EA (presentation, 30 min
B22	Bachelor's thesis	Presentation					15						3	plus discussion) (80 % + 20 %)

			sws	(seme	ester h	ours)	Total	Dist			kload p credits		ster	Type and scope of the
No.	No. Module name Teaching unit		L	т	Р	S	ECTS credits	1st sem.	2nd sem.	3rd sem.	4th sem.	5th sem.	6th sem.	examination
Tota	Total SWS and ECTS credits:		58	47 12	16 21	0	180	30	30	30	30	30	30	

¹ The type and scope of the examination depend on the specific manner in which the respective module is taught, see module handbook for details.

Key:

GOP Grundlagen- und Orientierungsprüfung; Preliminary examination EA = graded examination achievement, see Section 7 (2)(10) **ABMPO/TF**.

CA = ungraded course achievement, see Section 7 (2) sentence 11 ABMPO/TF.

WE = written examination

TA = tutorial achievement

LA = laboratory achievement, see Section 7 (3) sentence 4 **AMBPO/TF** and module handbook

SA = seminar achievement, see Section 7 (3) sentences 7 and 8 ABMPO/TF and module handbook

ExA = Excursion achievement

BA = Bachelor's thesis

Appendix 2: Structure of the Degree Program in Nanotechnology

No.	Module name	Teaching unit	SWS (semester hours)				Total ECTS	Dist	ribution		kload p 6 credits		ester	Type and scope of the
NO.		reaching unit	1	т	Р	S	credits	1st sem.	2nd	3rd sem.	4th sem.	5th sem.	6th sem.	examination
		Materials and their structure	2	1	Г	3		3.5	Sem.	Sem.	Senn.	Sem.	Sem.	
B1	Materials and their structure I	Fundamentals of metallurgical technology	1	1			7.5	2.5						EA (WE, 90 min)
	- Metallic materials (GOP)	Supplements to materials and their structure		1				1.5						
		Non-metallic inorganic materials	1	1					2.5					
B2	Materials and their structure II - Inorganic and organic mate-	Organic materials	1	1			10		2.5					EA (WE, 90 min) + CA
DZ	rials (GOP)	Exercises on non-metallic mate- rials		2			10		2.5					(LA)
		Labworks for NT I			2				2.5					
		Mechanical properties	2							2.5				
В3	Materials science I - Mechan- ics and structural characteri-	Characterization and inspection of materials	1	1			40 E			2.5				EA (WE, 90 min) + CA
ВЗ	zation	Exercise on mechanical proper- ties and characterization		2			12.5 			2.5				(LA)
		Labworks for NT II			4					5				
		Properties and characterization of functional materials I	1			2.5								
B4	Materials science II - Func-	Properties and characterization of functional materials II	1	1			12.5				2.5			EA (WE, 90 min) + CA
	tional properties of materials	Exercises on characterization and properties		2							2.5			(LA)
		Labworks for NT III			4						5			
		Scientific computing	1	1							2.5			
	Data convisition and model	Introduction to simulation meth- ods	1	1						2.5				
B5	Data acquisition and model- ing	Measurement analytics and sen- sor technology	1	1			10			2.5				EA (WE, 90 min)
		Jupyter notebooks in use for measurement analytics	1	1							2.5			
		General material properties	1	1								2.5		
B6	Applied materials science I - Materials with different bond-	Polymer materials	1	1			7.5				1	2.5	1	EA (WE, 90 min)
DU	ing types	Materials science and engineer- ing for metals	1	1								2.5		
	Applied materials science II	Glass and ceramics	1	1								2.5		
B7	Structure and functions of materials A	Materials in electrical engineer- ing	1	1			7.5					2.5		EA (WE, 90 min)

Ne	Madulanama	Teeshing wit	sws	6 (sem	ester h	ours)	Total	Dist	ributior		kload p 6 credits		ester	Type and scope of the
No.	Module name	Teaching unit	L		Р	S	ECTS credits	1st sem.	2nd sem.	3rd sem.	4th sem.	5th sem.	6th sem.	examination
		Micro and nanostructure re- search	1	1								2.5		
		Materials simulation	1	1								2.5		
	Applied materials Science III	Biomaterials	1	1								2.5		EA (WE, 90 min) + CA
B8	Structure and functions of materials B	Corrosion and surface technol- ogy	1	1			10					2.5		(LA)
		Labworks for NT IV			2							2.5		
B9	Nanotechnology I - Character-	Nano I: Introduction to nano- technology	1	1			5	2.5						EA (WE, 60 min)
	ization (GOP)	Nano II: Characterization	1	1				2.5						,,,,
	Nanotechnology II - Thermo-	Solid-state kinetics	1	1					2.5					
B10	dynamics & kinetics of mate- rials	Solid state thermodynamics	1	1			5		2.5					EA (WE, 60 min)
B11	Nanotechnology III -	Nano III: Materials	1	1			5			2.5				EA (WE, 60 min)
ын	Nanostructures	Particles	1	1			5			2.5				
B12	Nanotechnology IV - Semi- conductors	Nano devices, nano sensors Nano IV: Semiconductor devices	1	1			5				2.5 2.5			EA (WE, 60 min)
B13	Quantum mechanics for nan- otechnology	Quantum mechanics	4	2			7.5			7.5				EA (WE, 90 min)
B14	Sold-state physics for nano- technology	Solid-state physics	4	2			7.5				7.5			EA (WE, 90 min)
B15	Experimental physics I		3	1			5	5						EA (WE, 90 min)
B16	Experimental physics II		3	1	2		7.5		7.5					EA (WE, 90 min) + CA (LA)
B17	Mathematics for NT 1 (GOP)		4	2			7.5	7.5						EA (WE, 90 min) + CA (TA)
B18	Mathematics for NT 2		4	2			7.5		7.5					EA (WE, 90 min) + CA (TA)
B19	General and inorganic chem- istry for MWT/NT		4				5	5						EA (WE, 45 min)
B20	Elective module from the uni- versity module catalog		4				5					5		SL ¹
B21	Broadening Horizons accord- ing to Section 45						15						15	CA: see Section 45 (2)
Dee		Bachelor's thesis					4-						12	EA (Bachelor's thesis) + EA (presentation, 30 min
B22	Bachelor's thesis	Presentation					15						3	plus discussion) (80 % + 20 %)
		Total SWS and ECTS credits:	63	45 1	12 20	0	180	30	30	30	30	30	30	

¹ The type and scope of the examination depend on the specific manner in which the respective module is taught, see module handbook for details.

Key: GOP Grundlagen- und Orientierungsprüfung; Preliminary examination EA = graded examination achievement, see Section 7 (2)(10) ABMPO/TF. CA = ungraded course achievement, see Section 7 (2) sentence 11 ABMPO/TF.

WE = written examination

TA = tutorial achievement

LA = laboratory achievement, see Section 7 (3) sentence 4 **AMBPO/TF** and module handbook

SA = seminar achievement, see Section 7 (3) sentences 7 and 8 ABMPO/TF and module handbook

ExA = Excursion achievement

BA = Bachelor's thesis

Appendix 3: Degree program structure for the Bachelor's Degree Program AI Materials Science and Engineering

No	Module name	Tooshing unit	SWS (semester hours)				Dist	ribution i		kload p credits		ester	Type and scope of the	
No.	Module name	Teaching unit	L	Т	Р	S	credits	1st sem.	2nd sem.	3nd Sem	4th Sem	5th Sem	6th Sem	examination
		Materials and their structure	2	1				3.5						
B1	Materials and their structure I - Metallic materials (GOP)	Fundamentals of metallurgical technology	1	1			7.5	2.5						EA (WE, 90 min)
	- Metallic materials (GOP)	Supplements to materials and their structure		1				1.5						
		Non-metallic inorganic materials	1	1					2.5					
	Materials and their structure II	Organic materials	1	1					2.5					EA (WE, 90 min) + CA
B2	 Inorganic and organic mate- rials (GOP) 	Exercises on non-metallic mate- rials		2			10		2.5					(LA)
		Labworks for AI materials tech- nology I			2				2.5					
		Mechanical properties	2							2.5				
	Materials science I - Mechan-	Characterization and inspection of materials	1	1						2.5				
B3	ics and structural characteri- zation	Exercise on mechanical proper- ties and characterization		2			12.5			2.5				EA (WE, 90 min) + CA (LA)
		Labworks for AI materials tech- nology II			4					5				
		Properties and characterization of functional materials I	1	1							2.5			
B4	Materials science II - Func-	Properties and characterization of functional materials II	1	1			12.5				2.5			EA (WE, 90 min) + CA
54	tional properties of materials	Exercises on characterization and properties		2			12.5				2.5			(LA)
		Labworks for AI materials tech- nology III			4						5			
		Scientific computing	1	1							2.5			
	Data acquisition and model	Introduction to simulation meth- ods	1	1						2.5				
B5	Data acquisition and model- ing	Measurement analytics and sen- sor technology	1	1			10			2.5				EA (WE, 90 min)
		Jupyter notebooks in use for measurement analytics	1	1							2.5			
	Applied materials science I -	General material properties	1	1			7.5					2.5		
B6	Materials with different bond-	Polymer materials	1	1								2.5		EA (WE, 90 min)
	ing types	Materials science and engineer- ing for metals	1	1								2.5		, 00,
B7		Glass and ceramics	1	1			7.5					2.5		EA (WE, 90 min)

Nie	Madalamana	Teeshinnenit	sws	6 (sem	ester h	ours)	Total	Dist	ribution i		kload p credits		ester	Type and scope of the
No.	Module name	Teaching unit	L	` Т	Р	Ś	ECTS credits	1st sem.	2nd sem.	3nd Sem	4th Sem	5th Sem	6th Sem	examination
	Applied materials science II Structure and functions of	Materials in electrical engineer- ing	1	1								2.5		
	materials A	Micro and nanostructure re- search	1	1								2.5		
		Materials simulation	1	1								2.5		
	Applied materials Science III	Biomaterials	1	1								2.5		
B8	Structure and functions of materials B	Corrosion and surface technol- ogy	1	1			10					2.5		EA (WE, 90 min) + CA (LA)
		Labworks for AI materials tech- nology IV			2							2.5		
В9	Seminar: Data science in re- search and industry (GOP)	See FPODataS	Science	e			5	5						EA: See FPODataSci- ence
B10	Introduction to mathematical data analysis	See FPODataS	Science	е			5		5					EA: See FPODataSci- ence
B11	Foundations of computer sci- ence (compact)	see FPOII	NF				5			5				EA: see FPOINF
B12	Compulsory elective module: Data science	Compulsory elective module from electives pursuant to Sections 43 recommended: Parallel and function	and 44	FPOD	ataSci	ulsory ence ,	5			5				EA: See FPODataSci- ence
	Compulsory elective module:	Introduction to Machine Learn- ing or	2								(5)			
B13	Foundations of machine learning ²	Machine Learning for Engineers I - Introduction to Methods and Tools or	2				5				(5)			EA (WE, 60 min)
		Mathematical foundations of ma- chine learning	2								(5)			
B14	Machine learning in materials science	Lecture + tutorial: Machine learning in characterization and manufacturing	2	2			7.5				5			EA (WE, 90 min)
		Lecture: Material genomics	2								2.5			
B15	Experimental physics I		3	1			5	5						EA (WE, 90 min)
B16	Experimental physics II		2	2	2		7.5		7.5					EA (WE, 90 min) + CA (LA)
B17	Mathematics for data science 1 (GOP)	See FPODataS		10	10						EA: See FPODataSci- ence			
B18	Mathematics for data science 2	See FPODataS	Science	e			10		10					EA: See FPODataSci- ence
B19	Chemistry for material tech- nology		2				2.5			2.5				EA (WE, 45 min)
B20	Elective module from the uni- versity module catalog	Import from whole of FAU	4				5					5		CA ¹

No.	Module name	Teaching unit	sws	(seme	ester h	ours)	Total ECTS	Dist			kload po credits	er seme	ster	Type and scope of the
NO.			L	т	Р	S	credits	1st sem.	2nd sem.	3nd Sem	4th Sem	5th Sem	6th Sem	examination
		(Recommended: AIBE, Mathe- matics, Computer Science, Ma- terials Science)												
B21	Broadening Horizons accord- ing to Section 45						15						15	CA: see Section 45 (2)
		Bachelor's thesis											12	EA (Bachelor's thesis) + presentation, 30 min plus
B22	Bachelor's thesis	Presentation					15						3	discussion) (80 % + 20 %)
Total	SWS and ECTS credits:		63	40 1 <i>1</i>	12 15	0	180	27.5	32.5	30	30	30	30	

The type and scope of the examination depend on the specific manner in which the respective module is taught, see module handbook for details.
 Students must choose one of the three lectures on offer.

Key:

- GOP Grundlagen- und Orientierungsprüfung; Preliminary examination EA = graded examination achievement, see Section 7 (2) sentence 10 **ABMPO/TechFak** CA = ungraded course achievement, see Section 7 (2) sentence 11 **ABMPO/TechFak**
- WE = written examination
- TA = tutorial achievement

LA = laboratory achievement, see Section 7 (3) sentence 4 **AMBPO/TechFak** and module handbook SA = seminar achievement, see Section 7 (3) sentences 7 and 8 **ABMPO/TechFak** and module handbook

- ExA = Excursion achievement
- BA = Bachelor's thesis

Appendix 4: Degree program structure for Master's degree program in Materials Science and Engineering

N1 -	Madala wawa	To solving a subit	SW	/S (seme	ester hou	urs)	Total	sen	Worklo	oad per ECTS cre	dits	Type and scope of the exami-
No.	Module name	Teaching unit	L	т	Р	S	ECTS credits	1st sem.	2nd sem.	3rd Sem.	4th Sem.	nation
M1	Core subject 1 – Foundation module (compulsory) ¹		4	(0-4)	(0-4)	(0-2)	10	5	5			see Section 49 (4)
M2	Core subject 1 – Supplementary module (compulsory) ¹		(0-2)	(0-2)	(0-4)	(0-2)	5	2	3			see Section 49 (4)
М3	1. Elective module in materials sci- ence and engineering from core subject 1 ¹		(0-2)	(0-2)	(0-4)	(0-2)	5	5				See Section 49 (4)
M4	2. Elective module in materials sci- ence and engineering from core subject 1 ¹		(0-2)	(0-2)	(0-4)	(0-2)	5		5			see Section 49 (4)
М5	Elective module in materials science and engineering from one of the three core subjects ¹		(0-2)	(0-2)	(0-4)	(0-2)	5	5				see Section 49 (4)
M6	Core subject 2 – Foundation module (compulsory) ¹		4	(0-4)	(0-4)	(0-2)	10	5	5			see Section 49 (4)
M7	Core subject 2 – Supplementary module (compulsory) ¹		(0-2)	(0-2)	(0-4)	(0-2)	5	2	3			see Section 49 (4)
M8	Core subject 3 – Foundation module (compulsory) ¹		4	(0-4)	(0-4)	(0-2)	10	5	5			see Section 49 (4)
М9	Core subject 3 – Supplementary module (compulsory) ¹		(0-2)	(0-2)	(0-4)	(0-2)	5	2	3			see Section 49 (4)
M 10	1. Elective subject (from Faculty of Engineering incl. Materials Science and Engineering) ²		(0-2)	(0-2)	(0-4)	(0-2)	5			5		EA ²
M 11	2. Elective subject (from Faculty of Engineering incl. Materials Science and Engineering) ²		(0-2)	(0-2)	(0-4)	(0-2)	5			5		EA ²
М	Academic project ³	Literature research and methods				8	15			10		EA: SA ³
12		Advanced seminar				4				5		
м	Soft Skills⁴	Presentation tech- niques				3	5			4		EA ⁴
13		1 Excursion				1	5			1		(SA+ExA)
М	Master's thesis	Master's thesis					30				27	EA (MT) +

No.	Module name	Teaching unit	sw	/S (seme	ester hou	urs)	Total ECTS	sem	Worklo nester in I	oad per ECTS cre	dits	Type and scope of the exami-
NO.		reaching unit		т	D	S	credits	1st	2nd	3rd	4th	nation
						U U	creans	sem.	sem.	Sem.	Sem.	
14		Presentation									3	EA (Presentation 30 min plus discussion) (90 % + 10 %)
		Total SWS and ETCS credits:		0-28	0-44	16-38	120	31	20	20	30	
	Total Sw	S and ETCS credits:		28-	138		120	31	29	30	30	

See Section 49, selection of the first core subject from the nine specializations, selection of the second core subject from the remaining eight specializations, and selection of the third 1 core subject from the remaining seven specializations.

² see Section 50.

³ see Section 51.

see Section 52. 4

Key:

EA = graded examination achievement, see Section 7 (2)(10) ABMPO/TF.

CA = ungraded course achievement, see Section 7 (2) sentence 11 ABMPO/TF.

WE = written examination

O = oral examination

- LA = laboratory achievement, see Section 7 (3) sentence 4 **AMBPO/TF** and module handbook SA = seminar achievement, see Section 7 (3) sentences 7 and 8 **ABMPO/TF** and module handbook

MT = Master's thesis

Appendix 5: Structure of the Master's Degree Program in Nanotechnology

No.	Module name	Teaching unit	SWS (semester hours)				Total ECTS	Distribution of workload per semester in ECTS cred- its				Type and scope of the exami- nation
			L	т	P	S	cred- its	1st Sem	2nd Sem	3rd sem.	4th sem.	nation
M1	Nanocharacterization	Electron microscopy	2					3	3			
		Nanospectroscopy	2				10	3				EA: (oral 30 min)
		Scanning electron microscopy / nanoindentation	2	1					4			
M2	Laboratory course: Synthesis/charac- terization				5		5	5				LA
M3	Computational nanoscience		2	2			5		3	2		EA (written examination, 45 min)
	Top-down nanostructuring	Nanoelectronics	2						3			EA: (oral 30 min)
M4		Photolithography	2	1			10	4				
		Plating technology	2					3				
М5	Bottom-up nano synthesis / self-as- sembly	Molecular nanostructures	2				10			3		EA: (oral 30 min)
		Nanotechnology of disperse sys- tems	2	1						4		
		Self-assembly on surfaces	2						3			
M6	Core subject – foundational module	see Section 56	4	(0- 4)	(0- 4)	(0- 2)	10	5	5			see Section 56
M7	Core subject – supplementary module	see Section 56	(0- 2)	(0- 2)	(0- 4)	(0- 2)	5	5				see Section 56
M8	1. Elective module in materials science and engineering from core subject	see Section 56	(0- 2)	(0- 2)	(0- 4)	(0- 2)	5		5			see Section 56
М9	2. Elective module in materials science and engineering from core subject	see Section 56	(0- 2)	(0- 2)	(0- 4)	(0- 2)	5	3	2			see Section 56
M 10	1. Elective module: Engineering or sci- ences (from Faculty of Engineering in- cluding Materials Science or Faculty of Sciences)	see Section 57	(0- 2)	(0- 2)	(0- 4)	(0- 2)	5		5			CA, see Section 57
M 11	2. Elective module: Engineering or sci- ences (from Faculty of Engineering in- cluding Materials Science or Faculty of Sciences)	see Section 57	(0- 2)	(0- 2)	(0- 4)	(0- 2)	5			5		CA, see Section 57

No.	Module name	Teaching unit	SWS (semester hours)				Total ECTS	Distribution of workload per semester in ECTS cred- its				Type and scope of the exami- nation
			L	т	Р	S	cred- its	1st Sem	2nd Sem	3rd sem.	4th sem.	nation
M 12	Academic project pursuant to Section 58	Literature research and methods				4	10			5		EA: SA, see Section 58 (3)
		Advanced seminar				4				5		
M 13	Soft skills pursuant to Section 59	Presentation techniques				3	5			4		EA: SA + ExA, see Section 59 in conjunction with Section 52 (3)
		1 Excursion				1				1		
M 14	Master's thesis	Master's thesis					30				27	EA (MT) + EA (Presentation 30 min and discussion) (90 % + 10 %)
		Presentation									3	
		Total SWS and ETCS credits:	24 - 34	5 - 19	5 - 29	12 - 24	120	31	30	29	30	
			46-106									

Key:

EA = graded examination achievement, see Section 7 (2)(10) **ABMPO/TF**. CA = ungraded course achievement, see Section 7 (2) sentence 11 **ABMPO/TF**. WE = written examination

O = oral examination

LA = laboratory achievement, see Section 7 (3) sentence 4 **AMBPO/TF** and module handbook SA = seminar achievement, see Section 7 (3) sentences 7 and 8 **ABMPO/TF** and module handbook

MT = Master's thesis